DBMS > InfluxDB vs. MongoDB vs. PostgreSQL vs. SQream DB vs. Tarantool
System Properties Comparison InfluxDB vs. MongoDB vs. PostgreSQL vs. SQream DB vs. Tarantool
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | InfluxDB Xexclude from comparison | MongoDB Xexclude from comparison | PostgreSQL Xexclude from comparison | SQream DB Xexclude from comparison | Tarantool Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | DBMS for storing time series, events and metrics | One of the most popular document stores available both as a fully managed cloud service and for deployment on self-managed infrastructure | Widely used open source RDBMS Developed as objectoriented DBMS (Postgres), gradually enhanced with 'standards' like SQL | a GPU-based, columnar RDBMS for big data analytics workloads | In-memory computing platform with a flexible data schema for efficiently building high-performance applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Time Series DBMS | Document store | Relational DBMS with object oriented extensions, e.g.: user defined types/functions and inheritance. Handling of key/value pairs with hstore module. | Relational DBMS | Document store Key-value store Relational DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Spatial DBMS with GEO package | Spatial DBMS Search engine integrated Lucene index, currently in MongoDB Atlas only. Time Series DBMS Time Series Collections introduced in Release 5.0 Vector DBMS currently available in the MongoDB Atlas cloud service only | Document store Graph DBMS with Apache Age Spatial DBMS Vector DBMS with pgvector extension | Spatial DBMS with Tarantool/GIS extension | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | www.influxdata.com/products/influxdb-overview | www.mongodb.com | www.postgresql.org | sqream.com | www.tarantool.io | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.influxdata.com/influxdb | www.mongodb.com/docs/manual | www.postgresql.org/docs | docs.sqream.com | www.tarantool.io/en/doc | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | MongoDB, Inc | PostgreSQL Global Development Group www.postgresql.org/developer | SQream Technologies | VK | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2013 | 2009 | 1989 1989: Postgres, 1996: PostgreSQL | 2017 | 2008 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 2.7.6, April 2024 | 7.0.5, January 2024 | 16.4, August 2024 | 2022.1.6, December 2022 | 2.10.0, May 2022 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | Open Source MIT-License; commercial enterprise version available | Open Source MongoDB Inc.'s Server Side Public License v1. Prior versions were published under GNU AGPL v3.0. Commercial licenses are also available. | Open Source BSD | commercial | Open Source BSD-2, source-available extensions (modules), commercial licenses for Tarantool Enterprise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | no MongoDB available as DBaaS (MongoDB Atlas) | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. |
| PostgreSQL Flex @ STACKIT offers managed PostgreSQL Instances with adjustable CPU, RAM, storage amount and speed and several extensions available, in enterprise grade to perfectly match all application requirements. All 100% GDPR-compliant. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Go | C++ | C | C++, CUDA, Haskell, Java, Scala | C and C++ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | Linux OS X through Homebrew | Linux OS X Solaris Windows | FreeBSD HP-UX Linux NetBSD OpenBSD OS X Solaris Unix Windows | Linux | BSD Linux macOS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | schema-free | schema-free Although schema-free, documents of the same collection often follow the same structure. Optionally impose all or part of a schema by defining a JSON schema. | yes | yes | Flexible data schema: relational definition for tables with ability to store json-like documents in columns | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | Numeric data and Strings | yes string, integer, double, decimal, boolean, date, object_id, geospatial | yes | yes, ANSI Standard SQL Types | string, double, decimal, uuid, integer, blob, boolean, datetime | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | yes specific XML-type available, but no XML query functionality. | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | no | yes | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | SQL-like query language | Read-only SQL queries via the MongoDB Atlas SQL Interface | yes standard with numerous extensions | yes | Full-featured ANSI SQL support | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | HTTP API JSON over UDP | GraphQL HTTP REST Prisma proprietary protocol using JSON | ADO.NET JDBC native C library ODBC streaming API for large objects | .Net JDBC ODBC | Open binary protocol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | .Net Clojure Erlang Go Haskell Java JavaScript JavaScript (Node.js) Lisp Perl PHP Python R Ruby Rust Scala | Actionscript unofficial driver C C# C++ Clojure unofficial driver ColdFusion unofficial driver D unofficial driver Dart unofficial driver Delphi unofficial driver Erlang Go Groovy unofficial driver Haskell Java JavaScript Kotlin Lisp unofficial driver Lua unofficial driver MatLab unofficial driver Perl PHP PowerShell unofficial driver Prolog unofficial driver Python R unofficial driver Ruby Rust Scala Smalltalk unofficial driver Swift | .Net C C++ Delphi Java JDBC JavaScript (Node.js) Perl PHP Python Tcl | C++ Java JavaScript (Node.js) Python | C C# C++ Erlang Go Java JavaScript Lua Perl PHP Python Rust | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | no | JavaScript | user defined functions realized in proprietary language PL/pgSQL or with common languages like Perl, Python, Tcl etc. | user defined functions in Python | Lua, C and SQL stored procedures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | no | yes in MongoDB Atlas only | yes | no | yes, before/after data modification events, on replication events, client session events | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Sharding in enterprise version only | Sharding Partitioned by hashed, ranged, or zoned sharding keys. Live resharding allows users to change their shard keys as an online operation with zero downtime. | partitioning by range, list and (since PostgreSQL 11) by hash | horizontal and vertical partitioning | Sharding, partitioned with virtual buckets by user defined affinity key. Live resharding for scale up and scale down without maintenance downtime. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | selectable replication factor in enterprise version only | Multi-Source deployments with MongoDB Atlas Global Clusters Source-replica replication | Source-replica replication other methods possible by using 3rd party extensions | none | Asynchronous replication with multi-master option Configurable replication topology (full-mesh, chain, star) Synchronous quorum replication (with Raft) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | yes | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Eventual Consistency can be individually decided for each read operation Immediate Consistency default behaviour | Immediate Consistency | Immediate Consistency | Casual consistency across sharding partitions Eventual consistency within replicaset partition when using asyncronous replication Immediate Consistency within single instance Sequential consistency including linearizable read within replicaset partition when using Raft | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | no typically not used, however similar functionality with DBRef possible | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | no | Multi-document ACID Transactions with snapshot isolation | ACID | ACID | ACID, with serializable isolation and linearizable read (within partition); Configurable MVCC (within partition); No cross-shard distributed transactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | yes, cooperative multitasking | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes optional, enabled by default | yes | yes | yes, write ahead logging | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes Depending on used storage engine | yes In-memory storage engine introduced with MongoDB version 3.2 | no | yes, full featured in-memory storage engine with persistence | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | simple rights management via user accounts | Access rights for users and roles | fine grained access rights according to SQL-standard | Access Control Lists Mutual TLS authentication for Tarantol Enterprise Password based authentication Role-based access control (RBAC) and LDAP for Tarantol Enterprise Users and Roles | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
InfluxDB | MongoDB | PostgreSQL | SQream DB | Tarantool | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific characteristics | InfluxData is the creator of InfluxDB , the open source time series database. It... » more | MongoDB provides an integrated suite of cloud database and data services to accelerate... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competitive advantages | Time to Value InfluxDB is available in all the popular languages and frameworks,... » more | Built around the flexible document data model and unified API, MongoDB is a developer... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typical application scenarios | IoT & Sensor Monitoring Developers are witnessing the instrumentation of every available... » more | AI-enriched intelligent apps (Continental, Telefonica, Iron Mountain) Internet of... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key customers | InfluxData has more than 1,900 paying customers, including customers include MuleSoft,... » more | ADP, Adobe, Amadeus, AstraZeneca, Auto Trader, Barclays, BBVA, Bosch, Cisco, CERN,... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Market metrics | Fastest-growing database to drive 27,500 GitHub stars Over 750,000 daily active instances » more | Hundreds of millions downloads, over 150,000+ Atlas clusters provisioned every month... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Licensing and pricing models | Open source core with closed source clustering available either on-premise or on... » more | MongoDB database server: Server-Side Public License (SSPL) . Commercial licenses... » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
News | LLM Monitoring and Observability System Tables Part 2: How We Made It Faster System Tables Part 1: Introduction and Best Practices MaaS: How to Store and Analyze Real-Time Stock Trading Data Using Next.js and InfluxDB MaaS: How to Monitor Node.js App Performance with PM2 & InfluxDB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and services | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd parties | Studio 3T: The world's favorite IDE for working with MongoDB » more CData: Connect to Big Data & NoSQL through standard Drivers. » more | SharePlex is the reliable and affordable data replication solution for PostgreSQL migrations, high availability and more.
» more pgDash: In-Depth PostgreSQL Monitoring. » more CYBERTEC is a premier consulting company that provides open-source database PostgreSQL management and data science solutions. By offering PostgreSQL migrations, administration, design, and more, CYBERTEC provides an all-in-one catalog of powerful PostgreSQL support. It's through this exceptional service, equipped with a team of experts, that the company has established a proven reputation. When it comes to Machine Learning, Artificial Intelligence, and Big Data, CYBERTEC offers services customized for you. » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
InfluxDB | MongoDB | PostgreSQL | SQream DB | Tarantool | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Why Build a Time Series Data Platform? Time Series DBMS are the database category with the fastest increase in popularity Time Series DBMS as a new trend? | Snowflake is the DBMS of the Year 2021 PostgreSQL is the DBMS of the Year 2020 PostgreSQL is the DBMS of the Year 2018 | PostgreSQL is the DBMS of the Year 2023 Snowflake is the DBMS of the Year 2022, defending the title from last year Snowflake is the DBMS of the Year 2021 | Data processing speed and reliability: in-memory synchronous replication Simplify Industrial IoT: Use InfluxDB edge replication for centralized time series analytics with Amazon Timestream InfluxData avoids ’AI magic beans’ in InfluxDB time series database update for enterprises InfluxData makes performance, storage improvements to InfluxDB 3.0 InfluxData Enhances InfluxDB 3.0 with Performance Upgrades and Self-Managed Option InfluxData's Latest Updates Optimize Time Series Data for Better Performance, Scale and Management provided by Google News The future of AI's data infrastructure: Unlocking the power of GenAI with MongoDB and Capgemini MongoDB (MDB) Stock Declines While Market Improves: Some Information for Investors MongoDB: Playing The Long Game In A Fiercely Competitive Market This Stock Is Crushing Salesforce, MongoDB And Snowflake In AI Revenue MongoDB says it’s winning with targeted commercial AI projects provided by Google News Amazon Aurora PostgreSQL Limitless Database is now generally available Failing to connect Commento with PostgreSQL Timescale expands open source vector database capabilities for PostgreSQL New Malware PG_MEM Targets PostgreSQL Databases for Crypto Mining PostgreSQL tutorial: Get started with PostgreSQL 16 provided by Google News I SQream, you SQream, we all SQream for … data analytics? SQream Technologies raises $39.4 million for GPU-accelerated databases Accelerated Databases In The Fast Lane Chinese giant Alibaba leads investment round in Israel big-data startup Your Guide to Everything AI at NetApp Insight 2019 provided by Google News Deploying Tarantool Cartridge applications with zero effort (Part 1) VShard — horizontal scaling in Tarantool Accelerating PHP connectors for Tarantool using Async, Swoole, and Parallel IIoT platform databases – How Mail.ru Cloud Solutions deals with petabytes of data coming from a multitude of devices provided by Google News |
Share this page