DBMS > Amazon Aurora vs. Amazon DynamoDB vs. HEAVY.AI vs. PostgreSQL
System Properties Comparison Amazon Aurora vs. Amazon DynamoDB vs. HEAVY.AI vs. PostgreSQL
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | Amazon DynamoDB Xexclude from comparison | HEAVY.AI Formerly named 'OmniSci', rebranded to 'HEAVY.AI' in March 2022 Xexclude from comparison | PostgreSQL Xexclude from comparison | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | Hosted, scalable database service by Amazon with the data stored in Amazons cloud | A high performance, column-oriented RDBMS, specifically developed to harness the massive parallelism of modern CPU and GPU hardware | Widely used open source RDBMS Developed as objectoriented DBMS (Postgres), gradually enhanced with 'standards' like SQL | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Document store Key-value store | Relational DBMS | Relational DBMS with object oriented extensions, e.g.: user defined types/functions and inheritance. Handling of key/value pairs with hstore module. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | Spatial DBMS | Document store Graph DBMS with Apache Age Spatial DBMS Vector DBMS with pgvector extension | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | aws.amazon.com/dynamodb | github.com/heavyai/heavydb www.heavy.ai | www.postgresql.org | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | docs.aws.amazon.com/dynamodb | docs.heavy.ai | www.postgresql.org/docs | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Amazon | HEAVY.AI, Inc. | PostgreSQL Global Development Group www.postgresql.org/developer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2012 | 2016 | 1989 1989: Postgres, 1996: PostgreSQL | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 5.10, January 2022 | 16.4, August 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | commercial free tier for a limited amount of database operations | Open Source Apache Version 2; enterprise edition available | Open Source BSD | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | yes | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | PostgreSQL Flex @ STACKIT offers managed PostgreSQL Instances with adjustable CPU, RAM, storage amount and speed and several extensions available, in enterprise grade to perfectly match all application requirements. All 100% GDPR-compliant. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C++ and CUDA | C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | hosted | Linux | FreeBSD HP-UX Linux NetBSD OpenBSD OS X Solaris Unix Windows | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | schema-free | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | yes specific XML-type available, but no XML query functionality. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | no | yes | yes standard with numerous extensions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | RESTful HTTP API | JDBC ODBC Thrift Vega | ADO.NET JDBC native C library ODBC streaming API for large objects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | .Net ColdFusion Erlang Groovy Java JavaScript Perl PHP Python Ruby | All languages supporting JDBC/ODBC/Thrift Python | .Net C C++ Delphi Java JDBC JavaScript (Node.js) Perl PHP Python Tcl | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | no | no | user defined functions realized in proprietary language PL/pgSQL or with common languages like Perl, Python, Tcl etc. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | yes by integration with AWS Lambda | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | Sharding | Sharding Round robin | partitioning by range, list and (since PostgreSQL 11) by hash | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | yes | Multi-source replication | Source-replica replication other methods possible by using 3rd party extensions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no may be implemented via Amazon Elastic MapReduce (Amazon EMR) | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Eventual Consistency Immediate Consistency can be specified for read operations | Immediate Consistency | Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | ACID ACID across one or more tables within a single AWS account and region | no | ACID | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | yes | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | Access rights for users and roles can be defined via the AWS Identity and Access Management (IAM) | fine grained access rights according to SQL-standard | fine grained access rights according to SQL-standard | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and services | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd parties | CData: Connect to Big Data & NoSQL through standard Drivers. » more | CYBERTEC is a premier consulting company that provides open-source database PostgreSQL management and data science solutions. By offering PostgreSQL migrations, administration, design, and more, CYBERTEC provides an all-in-one catalog of powerful PostgreSQL support. It's through this exceptional service, equipped with a team of experts, that the company has established a proven reputation. When it comes to Machine Learning, Artificial Intelligence, and Big Data, CYBERTEC offers services customized for you. » more pgDash: In-Depth PostgreSQL Monitoring. » more SharePlex is the reliable and affordable data replication solution for PostgreSQL migrations, high availability and more. » more | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | Amazon DynamoDB | HEAVY.AI Formerly named 'OmniSci', rebranded to 'HEAVY.AI' in March 2022 | PostgreSQL | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Increased popularity for consuming DBMS services out of the cloud | PostgreSQL is the DBMS of the Year 2023 Snowflake is the DBMS of the Year 2022, defending the title from last year Snowflake is the DBMS of the Year 2021 Amazon Aurora for Core Banking Systems Amazon Aurora PostgreSQL Limitless Database is now generally available Amazon Aurora Introduces Global Database Writer Endpoint for Distributed Applications Amazon Aurora PostgreSQL now supports local write forwarding Amazon Aurora launches Global Database writer endpoint provided by Google News Build a scalable, context-aware chatbot with Amazon DynamoDB, Amazon Bedrock, and LangChain How Channel Corporation modernized their architecture with Amazon DynamoDB, Part 1: Motivation and approaches How Channel Corporation modernized their architecture with Amazon DynamoDB, Part 2: Streams Get started with Amazon DynamoDB zero-ETL integration with Amazon Redshift Join the preview of attribute-based access control for Amazon DynamoDB | Amazon Web Services provided by Google News 5 Q’s for Mike Flaxman, Vice President of Heavy.AI HEAVY.AI Accelerates Big Data Analytics with Vultr's High-Performance GPU Cloud Infrastructure HEAVY.AI Launches HEAVY 7.0, Introducing Real-Time Machine Learning Capabilities Generative AI Is Powerful—And Power Hungry Op-Ed: The killer app for 5G gets unveiled with iPhone 16 provided by Google News Amazon Aurora PostgreSQL Limitless Database is now generally available DuckDB And Hydra Partner To Get DuckDB Into PostgreSQL Failing to connect Commento with PostgreSQL Timescale expands open source vector database capabilities for PostgreSQL PostgreSQL tutorial: Get started with PostgreSQL 16 provided by Google News |
Share this page