DB-EnginesInfluxDB download bannerEnglish
Deutsch
Informationen zu relationalen und NoSQL DatenbankmanagementsystemenEin Service von solid IT

DBMS > EsgynDB

EsgynDB Systemeigenschaften

Bitte wählen Sie ein weiteres System aus, um es mit EsgynDB zu vergleichen.

Unsere Besucher vergleichen EsgynDB oft mit Trafodion, Impala und MariaDB.

Redaktionelle Informationen bereitgestellt von DB-Engines
NameEsgynDB
KurzbeschreibungEnterprise-class SQL-on-Hadoop solution, powered by Apache Trafodion
Primäres DatenbankmodellRelational DBMS
DB-Engines Ranking infomisst die Popularität von Datenbankmanagement- systemenranking trend
Trend Chart
Punkte0,18
Rang#250  Overall
#117  Relational DBMS
Websiteesgyn.com
Technische Dokumentationesgyn.com/­developers
EntwicklerEsgyn
Erscheinungsjahr2015
Lizenz infoCommercial or Open Sourcekommerziell
Ausschließlich ein Cloud-Service infoNur als Cloud-Service verfügbarnein
DBaaS Angebote (gesponserte Links) infoDatabase as a Service

Providers of DBaaS offerings, please contact us to be listed.
ImplementierungsspracheC++, Java
Server BetriebssystemeLinux
Datenschemaja
Typisierung infovordefinierte Datentypen, z.B. float oder dateja
XML Unterstützung infoVerarbeitung von Daten in XML Format, beispielsweise Speicherung von XML-Strukturen und/oder Unterstützung von XPath, XQuery, XSLTnein
Sekundärindizesja
SQL infoSupport of SQLja
APIs und andere ZugriffskonzepteADO.NET
JDBC
ODBC
Unterstützte ProgrammiersprachenAll languages supporting JDBC/ODBC/ADO.Net
Server-seitige Scripts infoStored ProceduresJava Stored Procedures
Triggersnein
Partitionierungsmechanismen infoMethoden zum Speichern von unterschiedlichen Daten auf unterschiedlichen KnotenSharding
Replikationsmechanismen infoMethoden zum redundanten Speichern von Daten auf mehreren KnotenMaster-master replication between multi datacenters
MapReduce infoBietet ein API für Map/Reduce Operationenja
Konsistenzkonzept infoMethoden zur Sicherstellung der Konsistenz in einem verteilten SystemImmediate Consistency
Fremdschlüssel inforeferenzielle Integritätja
Transaktionskonzept infoUnterstützung zur Sicherstellung der Datenintegrität bei nicht-atomaren DatenmanipulationenACID
Concurrency infoUnterstützung von gleichzeitig ausgeführten Datenmanipulationenja
Durability infoDauerhafte Speicherung der Datenja
In-Memory Unterstützung infoGibt es Möglichkeiten einige oder alle Strukturen nur im Hauptspeicher zu haltennein
Berechtigungskonzept infoZugriffskontrolleBenutzer mit feingranularem Berechtigungskonzept entsprechend SQL-Standard
Weitere Informationen bereitgestellt vom Systemhersteller
EsgynDB
Specific characteristics

Capabilities for Operational/Transactional Workloads

  • Deep Integration with HBase for row-wise access
  • Leverages and optimizes to strengths of underlying engine
  • Truly Distributed Transaction Manager
  • Provides multi row, table, and statement ACID transactional support
  • No bottlenecks to scaling in volume, concurrency, and size of transactions
  • Very efficient implementation, even matching HBase on single row transactions
  • Multi-Dimensional Access Method
  • Efficiently uses multi-column clustering index, even without predicates on leading columns, to retrieve just the rows needed and avoid scans on very large datasets
  • Substantially reduces need for indexes
  • Facilitate salting and computed (e.g. divisioning) columns as clustering key prefixes
  • Salting facilitates partitioned parallelism across the cluster, with ease of rebalancing as cluster is expanded
  • Time series data clustered using divisioning, for efficient access

Capabilities for BI and Analytical Workloads

  • Deep Integration with Apache ORC and Parquet for column-wise access
  • Leverages and optimizes to strengths of underlying engine
  • Sophisticated and mature SQL Optimizer, that learns from previous executions, to generate optimal query plans
  • Massively parallel data flow run-time engine for fast response times, while optimizing resource utilization, overflowing to disk automatically when there is memory pressure
  • Adaptive Degrees of Parallelism
  • Uses only the number of cores needed to execute a query, instead of using the entire cluster, achieving very high levels of concurrency, resiliency, and resource efficiency
  • Skew Buster
  • Eliminates skew in joins, rampant at higher scales, dramatically reducing response times and increasing the efficient and balanced use of the entire cluster

Hybrid Transactional/Analytical Processing Capabilities

  • Optimizes for operational and analytical workloads; depending on the query chooses
  • Serial or parallel plans
  • Appropriate join type: nested, probe cache for nested, merge, matching partition, repartitioned hash, replication by broadcast hash, inner / outer child broadcast
  • Uses risk premiums for nested and merge joins, and serial plans to avoid sub-optimal plans
  • Hot and Cold Data support
  • Expression based copying / moving of data from HBase to Apache ORC / Parquet
  • Access to HBase and / or Apache ORC / Parquet depending on type and focus of query
  • Multi-Tenancy and Workload Management System (WMS)
  • Allows allocation of appropriate cluster resources to operational and analytical workloads based on desired priorities and service levels desired
  • WMS gathers detailed workload metrics and facilitates threshold based alerts / actions
  • Security administration by tenant

Capabilities common to all workloads

  • Advanced Table Mapping User Defined Functions
  • Provides extensibility for integration for
  • Streaming – such as with Kafka
  • No SQL data model integration – SOLR for search, JanusGraph for graph
  • Analytical capabilities – such as Spark ML, R, TensorFlow
  • Other databases, using JDBC – e.g. Oracle
  • Comprehensive ANSI SQL and common Oracle, Teradata, other database function support, including support for ANSI OLAP functions
  • Java Stored Procedures and C++ and Java User Defined Functions / Table Mapping UDFs
  • ANSI SQL GRANT/REVOKE at user or role level from schema to object level, as well as for operational capabilities
  • Connectivity services for JDBC, ODBC, ADO.NET, and REST API clients, providing scale, load balancing, high availability, and connection pooling
  • Integration with Hibernate to provide ORM application development support
  • Loading tool, as well as bulk and incremental load capabilities, even on indexed tables

Enterprise Capabilities

  • On premise or cloud deployment
  • Provides disaster recovery with zero lost transactions, and scaling of reads and writes across multiple clusters and data centers
  • Active-active multi-master distributed synchronous replication at the table level
  • Provides point-in-time recovery to recover from operational errors leveraging transactionally consistent snapshots, transactional logs, and snapshots after non-transactional bulk loads
  • Table level backup and restore
  • Scales elastically, enabling dynamic online expansion or reduction of nodes or storage
  • Supports the separation of compute and storage to scale them independently
  • Enterprise security integrating with Apache Sentry, Secure Hadoop to leverage Kerberos for authentication, multi-domain Active Directory or LDAP; Encryption functions
  • Database Designer and Manager tools for developing, monitoring, and managing databases

Competitive advantages

EsgynDB is ideally suited to supporting Hybrid Transactional and Analytical Processing (HTAP) or Translytics or Hybrid Operational-Analytical Processing (HOAP) - terms coined by Gartner, Forrester, and 451 Research respectively, for the same concept of leveraging one database platform to handle multiple mixed workloads concurrently ranging from short-running transactional or operational queries to long-running or complex analytic queries at the same time.  EsgynDB can handle this with support for massive concurrency demands, and on very large datasets. 

EsgynDB scales out linearly to handle big data, and provides enterprise class features whether that be SQL maturity, disaster recovery, or security features, with the ease and reliability of a traditional SQL RDBMS but with the scalability and performance of NoSQL engines.

Typical application scenarios

Ideally suited to scenarios where high speed continuous data ingestion is required while in parallel doing real-time reporting and alerting, coupled with deep analytics.  Many IoT use-cases fit this model.

EsgynDB is also very well suited to modernizing data lakes, by bringing the power of a fully featured SQL engine to where the data resides, and being able to query across multiple disparate storage engines or storage formats.

Key customers

EsgynDB's customers are worldwide, with several in the Global Fortune 500, including one ranked in the top 5.  Use cases span various verticals from Financial Services, to Telecom, to Security, to Power and Energy Companies and more.

Customers that can be publicly referenced are listed at www.esgyn.com

Licensing and pricing models

EsgynDB Enterprise Edition is the commercially supported version of Apache Trafodion with some additional manageability features, with both 24x7 and 8x5 support models available.

EsgynDB Enterprise Advanced Edition contains additional value-added features needed for more complex or demanding scenarios, such as multi-datacenter support or multi-tenancy support.

EsgynDB is available on premise or in the cloud on a per-node per year license and support subscription model.

Zugehörige Produkte und Dienstleistungen

Wir laden Vertreter von Anbietern von zugehörigen Produkten ein uns zu kontaktieren, um hier Informationen über ihre Angebote zu präsentieren.

Weitere Ressourcen
EsgynDB
Erwähnungen in aktuellen Nachrichten

Esgyn Strato: Esgyn announces a Hybrid / Multi Cloud Big Data Platform Service to run and optimize your business
30. November 2018, Markets Insider

Esgyn Corporation and Ampool Partner to Bring In-Memory Optimized Operational, Transactional and Real-Time Analytics to Hadoop.
18. Mai 2017, PR Newswire

The Apache Software Foundation Announces Apache® Trafodion™ as a Top-Level Project
10. Januar 2018, GlobeNewswire

Esgyn Corporation and Zaloni Partner to Make Data Lakes More Powerful and Deliver Benefits Faster!
30. November 2017, PR Newswire

bereitgestellt von Google News




Teilen sie diese Seite mit ihrem Netzwerk

Featured Products

Couchbase logo

SQL + JSON + NoSQL.
Power, flexibility & scale.
All open source.
Get started now.

Neo4j logo

New to the world of graph databases? Become an expert today with your copy of the Graph Databases for Beginners ebook.

Redis logo

Start now with Redis Cloud
Secure, highly available Redis as a serverless, hosted, fully managed cloud service.
Sign up here.

RavenDB logo

Runs on Windows, Linux, Raspberry Pi. Easy to Operate, Fast Performance.
APIs for JS, .NET, Python.
Take a Free Download

Präsentieren Sie hier Ihr Produkt