DBMS > Brytlyt vs. Drizzle vs. InfluxDB vs. Oracle Berkeley DB vs. TimescaleDB
System Properties Comparison Brytlyt vs. Drizzle vs. InfluxDB vs. Oracle Berkeley DB vs. TimescaleDB
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Brytlyt Xexclude from comparison | Drizzle Xexclude from comparison | InfluxDB Xexclude from comparison | Oracle Berkeley DB Xexclude from comparison | TimescaleDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Drizzle has published its last release in September 2012. The open-source project is discontinued and Drizzle is excluded from the DB-Engines ranking. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Scalable GPU-accelerated RDBMS for very fast analytic and streaming workloads, leveraging PostgreSQL | MySQL fork with a pluggable micro-kernel and with an emphasis of performance over compatibility. | DBMS for storing time series, events and metrics | Widely used in-process key-value store | A time series DBMS optimized for fast ingest and complex queries, based on PostgreSQL | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Time Series DBMS | Key-value store supports sorted and unsorted key sets Native XML DBMS in the Oracle Berkeley DB XML version | Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Spatial DBMS with GEO package | Relational DBMS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | brytlyt.io | www.influxdata.com/products/influxdb-overview | www.oracle.com/database/technologies/related/berkeleydb.html | www.timescale.com | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.brytlyt.io | docs.influxdata.com/influxdb | docs.oracle.com/cd/E17076_05/html/index.html | docs.timescale.com | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Brytlyt | Drizzle project, originally started by Brian Aker | Oracle originally developed by Sleepycat, which was acquired by Oracle | Timescale | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2016 | 2008 | 2013 | 1994 | 2017 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 5.0, August 2023 | 7.2.4, September 2012 | 2.7.6, April 2024 | 18.1.40, May 2020 | 2.15.0, May 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source GNU GPL | Open Source MIT-License; commercial enterprise version available | Open Source commercial license available | Open Source Apache 2.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C, C++ and CUDA | C++ | Go | C, Java, C++ (depending on the Berkeley DB edition) | C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | Linux OS X Windows | FreeBSD Linux OS X | Linux OS X through Homebrew | AIX Android FreeBSD iOS Linux OS X Solaris VxWorks Windows | Linux OS X Windows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | schema-free | schema-free | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | Numeric data and Strings | no | numerics, strings, booleans, arrays, JSON blobs, geospatial dimensions, currencies, binary data, other complex data types | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes specific XML-type available, but no XML query functionality. | no | yes only with the Berkeley DB XML edition | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | no | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | yes with proprietary extensions | SQL-like query language | yes SQL interfaced based on SQLite is available | yes full PostgreSQL SQL syntax | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC native C library ODBC streaming API for large objects | JDBC | HTTP API JSON over UDP | ADO.NET JDBC native C library ODBC streaming API for large objects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | .Net C C++ Delphi Java Perl Python Tcl | C C++ Java PHP | .Net Clojure Erlang Go Haskell Java JavaScript JavaScript (Node.js) Lisp Perl PHP Python R Ruby Rust Scala | .Net Figaro is a .Net framework assembly that extends Berkeley DB XML into an embeddable database engine for .NET others Third-party libraries to manipulate Berkeley DB files are available for many languages C C# C++ Java JavaScript (Node.js) 3rd party binding Perl Python Tcl | .Net C C++ Delphi Java JDBC JavaScript Perl PHP Python R Ruby Scheme Tcl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | user defined functions in PL/pgSQL | no | no | no | user defined functions, PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, PL/Java, PL/PHP, PL/R, PL/Ruby, PL/Scheme, PL/Unix shell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no hooks for callbacks inside the server can be used. | no | yes only for the SQL API | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Sharding | Sharding in enterprise version only | none | yes, across time and space (hash partitioning) attributes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | Multi-source replication Source-replica replication | selectable replication factor in enterprise version only | Source-replica replication | Source-replica replication with hot standby and reads on replicas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | yes | no | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | ACID | no | ACID | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes Depending on used storage engine | yes | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | Pluggable authentication mechanisms e.g. LDAP, HTTP | simple rights management via user accounts | no | fine grained access rights according to SQL-standard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brytlyt | Drizzle | InfluxDB | Oracle Berkeley DB | TimescaleDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific characteristics | InfluxData is the creator of InfluxDB , the open source time series database. It... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competitive advantages | Time to Value InfluxDB is available in all the popular languages and frameworks,... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typical application scenarios | IoT & Sensor Monitoring Developers are witnessing the instrumentation of every available... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key customers | InfluxData has more than 1,900 paying customers, including customers include MuleSoft,... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Market metrics | Fastest-growing database to drive 27,500 GitHub stars Over 750,000 daily active instances » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Licensing and pricing models | Open source core with closed source clustering available either on-premise or on... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
News | LLM Monitoring and Observability System Tables Part 2: How We Made It Faster System Tables Part 1: Introduction and Best Practices MaaS: How to Store and Analyze Real-Time Stock Trading Data Using Next.js and InfluxDB MaaS: How to Monitor Node.js App Performance with PM2 & InfluxDB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brytlyt | Drizzle | InfluxDB | Oracle Berkeley DB | TimescaleDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | MySQL won the April ranking; did its forks follow? Has MySQL finally lost its mojo? | Why Build a Time Series Data Platform? Time Series DBMS are the database category with the fastest increase in popularity Time Series DBMS as a new trend? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Bringing GPUs To Bear On Bog Standard Relational Databases Brytlyt secures another $5M to bring big data and AI within the reach of any business About Charlie McIver provided by Google News | Simplify Industrial IoT: Use InfluxDB edge replication for centralized time series analytics with Amazon Timestream InfluxData avoids ’AI magic beans’ in InfluxDB time series database update for enterprises InfluxData makes performance, storage improvements to InfluxDB 3.0 InfluxData Enhances InfluxDB 3.0 with Performance Upgrades and Self-Managed Option InfluxData's Latest Updates Optimize Time Series Data for Better Performance, Scale and Management provided by Google News | What is NoSQL (Not Only SQL database)? Margo I. Seltzer How to store financial market data for backtesting A complete beginners guide to installing a Bitcoin Full Node on Linux (2018 Edition) Which Are the Top Local Databases for React Native provided by Google News | General availability: Latest version of the TimeScaleDB extension on Azure Database for PostgreSQL - Flexible Server PostgreSQL is Now Faster than Pinecone, 75% Cheaper, with New Open Source Extensions TimescaleDB for Azure Database for PostgreSQL to power IoT and time-series workloads Timescale Valuation Rockets to Over $1B with $110M Round, Marking the Explosive Rise of Time-Series Data Understanding Hyperfunctions in TimescaleDB provided by Google News |
Share this page