DBMS > Amazon DynamoDB vs. Google Cloud Bigtable vs. Netezza vs. NSDb vs. SiriDB
System Properties Comparison Amazon DynamoDB vs. Google Cloud Bigtable vs. Netezza vs. NSDb vs. SiriDB
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon DynamoDB Xexclude from comparison | Google Cloud Bigtable Xexclude from comparison | Netezza Also called PureData System for Analytics by IBM Xexclude from comparison | NSDb Xexclude from comparison | SiriDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Hosted, scalable database service by Amazon with the data stored in Amazons cloud | Google's NoSQL Big Data database service. It's the same database that powers many core Google services, including Search, Analytics, Maps, and Gmail. | Data warehouse and analytics appliance part of IBM PureSystems | Scalable, High-performance Time Series DBMS designed for Real-time Analytics on top of Kubernetes | Open Source Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Document store Key-value store | Key-value store Wide column store | Relational DBMS | Time Series DBMS | Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/dynamodb | cloud.google.com/bigtable | www.ibm.com/products/netezza | nsdb.io | siridb.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/dynamodb | cloud.google.com/bigtable/docs | nsdb.io/Architecture | docs.siridb.com | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | IBM | Cesbit | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2012 | 2015 | 2000 | 2017 | 2017 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial free tier for a limited amount of database operations | commercial | commercial | Open Source Apache Version 2.0 | Open Source MIT License | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | yes | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Java, Scala | C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | hosted | Linux included in appliance | Linux macOS | Linux | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | schema-free | schema-free | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | no | yes | yes: int, bigint, decimal, string | yes Numeric data | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | no | yes | all fields are automatically indexed | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | no | no | yes | SQL-like query language | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | RESTful HTTP API | gRPC (using protocol buffers) API HappyBase (Python library) HBase compatible API (Java) | JDBC ODBC OLE DB | gRPC HTTP REST WebSocket | HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | .Net ColdFusion Erlang Groovy Java JavaScript Perl PHP Python Ruby | C# C++ Go Java JavaScript (Node.js) Python | C C++ Fortran Java Lua Perl Python R | Java Scala | C C++ Go Java JavaScript (Node.js) PHP Python R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | no | no | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes by integration with AWS Lambda | no | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Sharding | Sharding | Sharding | Sharding | Sharding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | yes | Internal replication in Colossus, and regional replication between two clusters in different zones | Source-replica replication | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no may be implemented via Amazon Elastic MapReduce (Amazon EMR) | yes | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Eventual Consistency Immediate Consistency can be specified for read operations | Immediate consistency (for a single cluster), Eventual consistency (for two or more replicated clusters) | Eventual Consistency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID ACID across one or more tables within a single AWS account and region | Atomic single-row operations | ACID | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | Using Apache Lucene | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | Access rights for users and roles can be defined via the AWS Identity and Access Management (IAM) | Access rights for users, groups and roles based on Google Cloud Identity and Access Management (IAM) | Users with fine-grained authorization concept | simple rights management via user accounts | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and services | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd parties | CData: Connect to Big Data & NoSQL through standard Drivers. » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon DynamoDB | Google Cloud Bigtable | Netezza Also called PureData System for Analytics by IBM | NSDb | SiriDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Increased popularity for consuming DBMS services out of the cloud | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Build a scalable, context-aware chatbot with Amazon DynamoDB, Amazon Bedrock, and LangChain AWS Re:Invent 2018: Amazon DynamoDB Deep Dive: Advanced Design Patterns For DynamoDB (DAT401) [1a006c] How Channel Corporation modernized their architecture with Amazon DynamoDB, Part 2: Streams AWS Re:Invent 2018: Amazon DynamoDB Deep Dive: Advanced Design Patterns For DynamoDB (DAT401) [11b37b] How Channel Corporation modernized their architecture with Amazon DynamoDB, Part 1: Motivation and approaches provided by Google News | Google Cloud adds graph processing to Spanner, SQL support to Bigtable Google introduces Bigtable SQL access and Spanner's new AI-ready features Google Cloud Rolls Out Axion-Based C4A VMs for Improved Performance Google Cloud expands its database portfolio with new AI capabilities Sifflet Achieves Google Cloud Ready - BigQuery Designation provided by Google News | How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime Five real-life Netezza performance server use cases AWS and IBM Netezza come out in support of Iceberg in table format face-off IBM Completes Acquisition of Netezza U.S. Navy Chooses Yellowbrick, Sunsets IBM Netezza provided by Google News |
Share this page