DBMS > Amazon Neptune vs. Apache Impala vs. Brytlyt vs. TimescaleDB
System Properties Comparison Amazon Neptune vs. Apache Impala vs. Brytlyt vs. TimescaleDB
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Neptune Xexclude from comparison | Apache Impala Xexclude from comparison | Brytlyt Xexclude from comparison | TimescaleDB Xexclude from comparison | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Fast, reliable graph database built for the cloud | Analytic DBMS for Hadoop | Scalable GPU-accelerated RDBMS for very fast analytic and streaming workloads, leveraging PostgreSQL | A time series DBMS optimized for fast ingest and complex queries, based on PostgreSQL | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Graph DBMS RDF store | Relational DBMS | Relational DBMS | Time Series DBMS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | Relational DBMS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/neptune | impala.apache.org | brytlyt.io | www.timescale.com | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | aws.amazon.com/neptune/developer-resources | impala.apache.org/impala-docs.html | docs.brytlyt.io | docs.timescale.com | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Apache Software Foundation Apache top-level project, originally developed by Cloudera | Brytlyt | Timescale | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2017 | 2013 | 2016 | 2017 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 4.1.0, June 2022 | 5.0, August 2023 | 2.15.0, May 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source Apache Version 2 | commercial | Open Source Apache 2.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C++ | C, C++ and CUDA | C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux | Linux OS X Windows | Linux OS X Windows | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | schema-free | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | yes | numerics, strings, booleans, arrays, JSON blobs, geospatial dimensions, currencies, binary data, other complex data types | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | no | yes specific XML-type available, but no XML query functionality. | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | no | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | no | SQL-like DML and DDL statements | yes | yes full PostgreSQL SQL syntax | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | OpenCypher RDF 1.1 / SPARQL 1.1 TinkerPop Gremlin | JDBC ODBC | ADO.NET JDBC native C library ODBC streaming API for large objects | ADO.NET JDBC native C library ODBC streaming API for large objects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | C# Go Java JavaScript PHP Python Ruby Scala | All languages supporting JDBC/ODBC | .Net C C++ Delphi Java Perl Python Tcl | .Net C C++ Delphi Java JDBC JavaScript Perl PHP Python R Ruby Scheme Tcl | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | no | yes user defined functions and integration of map-reduce | user defined functions in PL/pgSQL | user defined functions, PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, PL/Java, PL/PHP, PL/R, PL/Ruby, PL/Scheme, PL/Unix shell | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | no | no | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | none | Sharding | yes, across time and space (hash partitioning) attributes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Multi-availability zones high availability, asynchronous replication for up to 15 read replicas within a single region. Global database clusters consists of a primary write DB cluster in one region, and up to five secondary read DB clusters in different regions. Each secondary region can have up to 16 reader instances. | selectable replication factor | Source-replica replication | Source-replica replication with hot standby and reads on replicas | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | yes query execution via MapReduce | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Eventual Consistency | Immediate Consistency | Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes Relationships in graphs | no | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | ACID | ACID | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes with encyption-at-rest | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | Access rights for users and roles can be defined via the AWS Identity and Access Management (IAM) | Access rights for users, groups and roles based on Apache Sentry and Kerberos | fine grained access rights according to SQL-standard | fine grained access rights according to SQL-standard | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Neptune | Apache Impala | Brytlyt | TimescaleDB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | New Amazon Neptune engine version delivers up to 9 times faster and 10 times higher throughput for openCypher query performance How Prisma Cloud built Infinity Graph using Amazon Neptune and Amazon OpenSearch Service Using knowledge graphs to build GraphRAG applications with Amazon Bedrock and Amazon Neptune Make relevant movie recommendations using Amazon Neptune, Amazon Neptune Machine Learning, and Amazon OpenSearch Service Uncover hidden connections in unstructured financial data with Amazon Bedrock and Amazon Neptune provided by Google News | Tabular, the vendor-neutral data store based on Apache Iceberg, raises $26M in funding Apache Doris just 'graduated': Why care about this SQL data warehouse Apache Doris Analytical Database Graduates from Apache Incubator Apache Iceberg Changes Everything: What's Underneath? Building a Large-scale Transactional Data Lake at Uber Using Apache Hudi provided by Google News | Bringing GPUs To Bear On Bog Standard Relational Databases Brytlyt secures another $5M to bring big data and AI within the reach of any business About Charlie McIver provided by Google News | General availability: Latest version of the TimeScaleDB extension on Azure Database for PostgreSQL - Flexible Server PostgreSQL is Now Faster than Pinecone, 75% Cheaper, with New Open Source Extensions TimescaleDB for Azure Database for PostgreSQL to power IoT and time-series workloads Timescale Valuation Rockets to Over $1B with $110M Round, Marking the Explosive Rise of Time-Series Data Understanding Hyperfunctions in TimescaleDB provided by Google News |
Share this page