DBMS > Amazon Aurora vs. InfluxDB vs. Netezza vs. Oracle Berkeley DB vs. OrigoDB
System Properties Comparison Amazon Aurora vs. InfluxDB vs. Netezza vs. Oracle Berkeley DB vs. OrigoDB
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | InfluxDB Xexclude from comparison | Netezza Also called PureData System for Analytics by IBM Xexclude from comparison | Oracle Berkeley DB Xexclude from comparison | OrigoDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | DBMS for storing time series, events and metrics | Data warehouse and analytics appliance part of IBM PureSystems | Widely used in-process key-value store | A fully ACID in-memory object graph database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Time Series DBMS | Relational DBMS | Key-value store supports sorted and unsorted key sets Native XML DBMS in the Oracle Berkeley DB XML version | Document store Object oriented DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | Spatial DBMS with GEO package | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | www.influxdata.com/products/influxdb-overview | www.ibm.com/products/netezza | www.oracle.com/database/technologies/related/berkeleydb.html | origodb.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | docs.influxdata.com/influxdb | docs.oracle.com/cd/E17076_05/html/index.html | origodb.com/docs | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | IBM | Oracle originally developed by Sleepycat, which was acquired by Oracle | Robert Friberg et al | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2013 | 2000 | 1994 | 2009 under the name LiveDB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 2.7.6, April 2024 | 18.1.40, May 2020 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source MIT-License; commercial enterprise version available | commercial | Open Source commercial license available | Open Source | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Go | C, Java, C++ (depending on the Berkeley DB edition) | C# | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux OS X through Homebrew | Linux included in appliance | AIX Android FreeBSD iOS Linux OS X Solaris VxWorks Windows | Linux Windows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | schema-free | yes | schema-free | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | Numeric data and Strings | yes | no | User defined using .NET types and collections | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | yes only with the Berkeley DB XML edition | no can be achieved using .NET | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | no | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | SQL-like query language | yes | yes SQL interfaced based on SQLite is available | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | HTTP API JSON over UDP | JDBC ODBC OLE DB | .NET Client API HTTP API LINQ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | .Net Clojure Erlang Go Haskell Java JavaScript JavaScript (Node.js) Lisp Perl PHP Python R Ruby Rust Scala | C C++ Fortran Java Lua Perl Python R | .Net Figaro is a .Net framework assembly that extends Berkeley DB XML into an embeddable database engine for .NET others Third-party libraries to manipulate Berkeley DB files are available for many languages C C# C++ Java JavaScript (Node.js) 3rd party binding Perl Python Tcl | .Net | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | no | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no | no | yes only for the SQL API | yes Domain Events | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | Sharding in enterprise version only | Sharding | none | horizontal partitioning client side managed; servers are not synchronized | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | selectable replication factor in enterprise version only | Source-replica replication | Source-replica replication | Source-replica replication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | no | no | depending on model | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | ACID | ACID | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | yes | yes Write ahead log | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | yes Depending on used storage engine | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | simple rights management via user accounts | Users with fine-grained authorization concept | no | Role based authorization | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | InfluxDB | Netezza Also called PureData System for Analytics by IBM | Oracle Berkeley DB | OrigoDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific characteristics | InfluxData is the creator of InfluxDB , the open source time series database. It... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competitive advantages | Time to Value InfluxDB is available in all the popular languages and frameworks,... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typical application scenarios | IoT & Sensor Monitoring Developers are witnessing the instrumentation of every available... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key customers | InfluxData has more than 1,900 paying customers, including customers include MuleSoft,... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Market metrics | Fastest-growing database to drive 27,500 GitHub stars Over 750,000 daily active instances » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Licensing and pricing models | Open source core with closed source clustering available either on-premise or on... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
News | LLM Monitoring and Observability System Tables Part 2: How We Made It Faster System Tables Part 1: Introduction and Best Practices MaaS: How to Store and Analyze Real-Time Stock Trading Data Using Next.js and InfluxDB MaaS: How to Monitor Node.js App Performance with PM2 & InfluxDB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | InfluxDB | Netezza Also called PureData System for Analytics by IBM | Oracle Berkeley DB | OrigoDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | Why Build a Time Series Data Platform? Time Series DBMS are the database category with the fastest increase in popularity Time Series DBMS as a new trend? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Amazon Aurora for Core Banking Systems Amazon Aurora PostgreSQL Limitless Database is now generally available Amazon Aurora Introduces Global Database Writer Endpoint for Distributed Applications Amazon Aurora PostgreSQL now supports local write forwarding Amazon Aurora launches Global Database writer endpoint provided by Google News | Simplify Industrial IoT: Use InfluxDB edge replication for centralized time series analytics with Amazon Timestream InfluxData avoids ’AI magic beans’ in InfluxDB time series database update for enterprises InfluxData makes performance, storage improvements to InfluxDB 3.0 InfluxData Enhances InfluxDB 3.0 with Performance Upgrades and Self-Managed Option InfluxData's Latest Updates Optimize Time Series Data for Better Performance, Scale and Management provided by Google News | How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime Five real-life Netezza performance server use cases AWS and IBM Netezza come out in support of Iceberg in table format face-off IBM Completes Acquisition of Netezza U.S. Navy Chooses Yellowbrick, Sunsets IBM Netezza provided by Google News | What is NoSQL (Not Only SQL database)? Margo I. Seltzer How to store financial market data for backtesting A complete beginners guide to installing a Bitcoin Full Node on Linux (2018 Edition) Which Are the Top Local Databases for React Native provided by Google News |
Share this page