DBMS > Amazon Aurora vs. Apache Phoenix vs. Databend vs. HEAVY.AI vs. Kinetica
System Properties Comparison Amazon Aurora vs. Apache Phoenix vs. Databend vs. HEAVY.AI vs. Kinetica
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | Apache Phoenix Xexclude from comparison | Databend Xexclude from comparison | HEAVY.AI Formerly named 'OmniSci', rebranded to 'HEAVY.AI' in March 2022 Xexclude from comparison | Kinetica Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | A scale-out RDBMS with evolutionary schema built on Apache HBase | An open-source, elastic, and workload-aware cloud data warehouse designed to meet businesses' massive-scale analytics needs at low cost and with low complexity | A high performance, column-oriented RDBMS, specifically developed to harness the massive parallelism of modern CPU and GPU hardware | Fully vectorized database across both GPUs and CPUs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Relational DBMS | Relational DBMS | Relational DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | Spatial DBMS | Spatial DBMS Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | phoenix.apache.org | github.com/datafuselabs/databend www.databend.com | github.com/heavyai/heavydb www.heavy.ai | www.kinetica.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | phoenix.apache.org | docs.databend.com | docs.heavy.ai | docs.kinetica.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Apache Software Foundation | Databend Labs | HEAVY.AI, Inc. | Kinetica | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2014 | 2021 | 2016 | 2012 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 5.0-HBase2, July 2018 and 4.15-HBase1, December 2019 | 1.0.59, April 2023 | 5.10, January 2022 | 7.1, August 2021 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source Apache Version 2.0 | Open Source Apache Version 2.0 | Open Source Apache Version 2; enterprise edition available | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Java | Rust | C++ and CUDA | C, C++ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux Unix Windows | hosted Linux macOS | Linux | Linux | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes late-bound, schema-on-read capabilities | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | no | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | yes | yes | yes | SQL-like DML and DDL statements | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | JDBC | CLI Client JDBC RESTful HTTP API | JDBC ODBC Thrift Vega | JDBC ODBC RESTful HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | C C# C++ Go Groovy Java PHP Python Scala | Go Java JavaScript (Node.js) Python Rust | All languages supporting JDBC/ODBC/Thrift Python | C++ Java JavaScript (Node.js) Python | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | user defined functions | no | no | user defined functions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no | no | no | yes triggers when inserted values for one or more columns fall within a specified range | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | Sharding | none | Sharding Round robin | Sharding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | Multi-source replication Source-replica replication | none | Multi-source replication | Source-replica replication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | Hadoop integration | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Immediate Consistency or Eventual Consistency | Immediate Consistency | Immediate Consistency | Immediate Consistency or Eventual Consistency depending on configuration | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | no | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | ACID | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | yes | yes | yes GPU vRAM or System RAM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | Access Control Lists (using HBase ACL) for RBAC, integration with Apache Ranger for RBAC & ABAC, multi-tenancy | Users with fine-grained authorization concept, user roles | fine grained access rights according to SQL-standard | Access rights for users and roles on table level | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | Apache Phoenix | Databend | HEAVY.AI Formerly named 'OmniSci', rebranded to 'HEAVY.AI' in March 2022 | Kinetica | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | Cloudera's HBase PaaS offering now supports Complex Transactions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Amazon Aurora for Core Banking Systems Amazon Aurora PostgreSQL Limitless Database is now generally available Amazon Aurora Introduces Global Database Writer Endpoint for Distributed Applications Amazon Aurora PostgreSQL now supports local write forwarding Amazon Aurora launches Global Database writer endpoint provided by Google News | Supercharge SQL on Your Data in Apache HBase with Apache Phoenix HBase With Apache Phoenix - A Beginner's Guide to Architecting Big Data Applications [Video] Deep dive into Azure HDInsight 4.0 Amazon EMR 4.7.0 – Apache Tez & Phoenix, Updates to Existing Apps Azure.Source – Volume 45 provided by Google News | Data Bending: Creating Unique Digital Visual Effects provided by Google News | 5 Q’s for Mike Flaxman, Vice President of Heavy.AI HEAVY.AI Accelerates Big Data Analytics with Vultr's High-Performance GPU Cloud Infrastructure HEAVY.AI Launches HEAVY 7.0, Introducing Real-Time Machine Learning Capabilities Generative AI Is Powerful—And Power Hungry Op-Ed: The killer app for 5G gets unveiled with iPhone 16 provided by Google News | Kinetica Elevates RAG with Fast Access to Real-Time Data Kinetica: AI is a ‘killer app’ for data analytics How GPUs Are Helping Paris’ Public Hospital System Combat the Spread of COVID-19 Transforming spatiotemporal data analysis with GPUs and generative AI Kinetica Adds $6 Million in Acceleration Funding and Expands Management Team provided by Google News |
Share this page