DBMS > EsgynDB vs. Google Cloud Datastore vs. Netezza
System Properties Comparison EsgynDB vs. Google Cloud Datastore vs. Netezza
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | EsgynDB Xexclude from comparison | Google Cloud Datastore Xexclude from comparison | Netezza Also called PureData System for Analytics by IBM Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Enterprise-class SQL-on-Hadoop solution, powered by Apache Trafodion | Automatically scaling NoSQL Database as a Service (DBaaS) on the Google Cloud Platform | Data warehouse and analytics appliance part of IBM PureSystems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Document store | Relational DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | www.esgyn.cn | cloud.google.com/datastore | www.ibm.com/products/netezza | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | cloud.google.com/datastore/docs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Esgyn | IBM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2008 | 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | commercial | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | yes | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C++, Java | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | Linux | hosted | Linux included in appliance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | schema-free | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes, details here | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | SQL-like query language (GQL) | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | gRPC (using protocol buffers) API RESTful HTTP/JSON API | JDBC ODBC OLE DB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | All languages supporting JDBC/ODBC/ADO.Net | .Net Go Java JavaScript (Node.js) PHP Python Ruby | C C++ Fortran Java Lua Perl Python R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | Java Stored Procedures | using Google App Engine | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | no | Callbacks using the Google Apps Engine | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Sharding | Sharding | Sharding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Multi-source replication between multi datacenters | Multi-source replication using Paxos | Source-replica replication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | yes | yes using Google Cloud Dataflow | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Immediate Consistency or Eventual Consistency depending on type of query and configuration Strong Consistency is default for entity lookups and queries within an Entity Group (but can instead be made eventually consistent). Other queries are always eventual consistent. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | yes via ReferenceProperties or Ancestor paths | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | ACID Serializable Isolation within Transactions, Read Committed outside of Transactions | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | Access rights for users, groups and roles based on Google Cloud Identity and Access Management (IAM) | Users with fine-grained authorization concept | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EsgynDB | Google Cloud Datastore | Netezza Also called PureData System for Analytics by IBM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Best cloud storage of 2024 Google Gets Rid of Fees To Transfer Data Out of Cloud Platform Google Cloud vs AWS: Which Cloud Computing Platform is Better? Google App Engine 17 Top Cloud Storage Companies to Know provided by Google News | Unify and share data across Netezza and watsonx.data for new generative AI applications Price Chopper Chooses IBM Netezza to Analyze Its Business Data How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime AWS and IBM Netezza come out in support of Iceberg in table format face-off Copy data from Netezza to Azure with Azure Data Factory provided by Google News |
Share this page