DBMS > Databricks vs. FatDB vs. Netezza
System Properties Comparison Databricks vs. FatDB vs. Netezza
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Databricks Xexclude from comparison | FatDB Xexclude from comparison | Netezza Also called PureData System for Analytics by IBM Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FatDB/FatCloud has ceased operations as a company with February 2014. FatDB is discontinued and excluded from the ranking. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | The Databricks Lakehouse Platform combines elements of data lakes and data warehouses to provide a unified view onto structured and unstructured data. It is based on Apache Spark. | A .NET NoSQL DBMS that can integrate with and extend SQL Server. | Data warehouse and analytics appliance part of IBM PureSystems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Document store Relational DBMS | Document store Key-value store | Relational DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | www.databricks.com | www.ibm.com/products/netezza | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.databricks.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Databricks | FatCloud | IBM | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2013 | 2012 | 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | commercial | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C# | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Windows | Linux included in appliance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | Flexible Schema (defined schema, partial schema, schema free) | schema-free | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | with Databricks SQL | no Via inetgration in SQL Server | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | JDBC ODBC RESTful HTTP API | .NET Client API LINQ RESTful HTTP API RPC Windows WCF Bindings | JDBC ODBC OLE DB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Python R Scala | C# | C C++ Fortran Java Lua Perl Python R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | user defined functions and aggregates | yes via applications | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes via applications | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Sharding | Sharding | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | yes | selectable replication factor | Source-replica replication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Eventual Consistency Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | no Can implement custom security layer via applications | Users with fine-grained authorization concept | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Databricks | FatDB | Netezza Also called PureData System for Analytics by IBM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific characteristics | Supported database models : In addition to the Document store and Relational DBMS... » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Databricks | FatDB | Netezza Also called PureData System for Analytics by IBM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | PostgreSQL is the DBMS of the Year 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Databricks to Launch Data Intelligence Platform in Indonesia by 2025 Harbr Data Announces Partnership with Databricks to Deploy Data Marketplaces at Scale Report: Databricks Completes Largest Financing Round Yet, Raising $5 Billion Databricks expands ASEAN presence with entry into Indonesia Databricks Inks $5 Billion of Private Credit, Bank Funding provided by Google News | Netezza and IBM Cloud Pak for Data: A knockout combo for tough data How to use Netezza Performance Server query data in Amazon Simple Storage Service (S3) How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime Unify and share data across Netezza and watsonx.data for new generative AI applications IBM Completes Acquisition of Netezza provided by Google News |
Share this page