DBMS > Couchbase vs. Cubrid vs. TimescaleDB
System Properties Comparison Couchbase vs. Cubrid vs. TimescaleDB
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Couchbase Originally called Membase Xexclude from comparison | Cubrid Xexclude from comparison | TimescaleDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | A distributed document store with integrated cache, a powerful search engine, in-built operational and analytical capabilities, and an embedded mobile database | CUBRID is an open-source SQL-based relational database management system with object extensions for OLTP | A time series DBMS optimized for fast ingest and complex queries, based on PostgreSQL | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Document store | Relational DBMS | Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Key-value store originating from the former Membase product and supporting the Memcached protocol Spatial DBMS using the Geocouch extension Search engine Time Series DBMS Vector DBMS | Relational DBMS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | www.couchbase.com | cubrid.com (korean) cubrid.org (english) | www.timescale.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.couchbase.com | cubrid.org/manuals | docs.timescale.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Couchbase, Inc. | CUBRID Corporation, CUBRID Foundation | Timescale | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2011 | 2008 | 2017 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | Server: 7.2, June 2023; Mobile: 3.1, March 2022; Couchbase Capella (DBaaS), June 2023 | 11.0, January 2021 | 2.15.0, May 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | Open Source Business Source License (BSL 1.1); Commercial licenses also available | Open Source Apache Version 2.0 | Open Source Apache 2.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C, C++, Go and Erlang | C, C++, Java | C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | Linux OS X Windows | Linux Windows | Linux OS X Windows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | schema-free | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | numerics, strings, booleans, arrays, JSON blobs, geospatial dimensions, currencies, binary data, other complex data types | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | SQL++, extends ANSI SQL to JSON for operational, transactional, and analytic use cases | yes | yes full PostgreSQL SQL syntax | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | CLI Client HTTP REST Kafka Connector Native language bindings for CRUD, Query, Search and Analytics APIs Spark Connector Spring Data | ADO.NET JDBC ODBC OLE DB | ADO.NET JDBC native C library ODBC streaming API for large objects | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | .Net C Go Java JavaScript Node.js Kotlin PHP Python Ruby Scala | C C# C++ Go Java JavaScript (Node.js) Perl PHP Python Ruby | .Net C C++ Delphi Java JDBC JavaScript Perl PHP Python R Ruby Scheme Tcl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | Functions and timers in JavaScript and UDFs in Java, Python, SQL++ | Java Stored Procedures | user defined functions, PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, PL/Java, PL/PHP, PL/R, PL/Ruby, PL/Scheme, PL/Unix shell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes via the TAP protocol | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | Automatic Sharding | none | yes, across time and space (hash partitioning) attributes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Multi-source replication including cross data center replication Source-replica replication | Source-replica replication | Source-replica replication with hot standby and reads on replicas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Eventual Consistency Immediate Consistency selectable on a per-operation basis | Immediate Consistency | Immediate Consistency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | ACID | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes Ephemeral buckets | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | User and Administrator separation with password-based and LDAP integrated Authentication. Role-base access control. | fine grained access rights according to SQL-standard | fine grained access rights according to SQL-standard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and services | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd parties | CData: Connect to Big Data & NoSQL through standard Drivers. » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Couchbase Originally called Membase | Cubrid | TimescaleDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Couchbase climbs up the DB-Engines Ranking, increasing its popularity by 10% every month | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Couchbase CFO to Present at UBS AI and Barclays Tech Conferences in December | BASE Stock News Couchbase’s stock crumbles on anticipation of significant growth slowdown After Leaping 27% Couchbase, Inc. (NASDAQ:BASE) Shares Are Not Flying Under The Radar Couchbase (BASE) Sets Q3 2025 Earnings Call for December 3: What to Watch | BASE Stock News Couchbase Capella gets columnar support on AWS provided by Google News | NHN Willing to Be More Open provided by Google News | General availability: Latest version of the TimeScaleDB extension on Azure Database for PostgreSQL - Flexible Server PostgreSQL is Now Faster than Pinecone, 75% Cheaper, with New Open Source Extensions Timescale Announces TimescaleDB 1.0—Empowering Organizations to Leverage Time-Series Data to Analyze the Past, Understand the Present, and Predict the Future TimescaleDB for Azure Database for PostgreSQL to power IoT and time-series workloads Understanding Hyperfunctions in TimescaleDB provided by Google News |
Share this page