DBMS > ClickHouse vs. Kinetica vs. Pinecone
System Properties Comparison ClickHouse vs. Kinetica vs. Pinecone
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | ClickHouse Xexclude from comparison | Kinetica Xexclude from comparison | Pinecone Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | A high-performance, column-oriented SQL DBMS for online analytical processing (OLAP) that uses all available system resources to their full potential to process each analytical query as fast as possible. It is available as both an open-source software and a cloud offering. | Fully vectorized database across both GPUs and CPUs | A managed, cloud-native vector database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Vector DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Time Series DBMS | Spatial DBMS Time Series DBMS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | clickhouse.com | www.kinetica.com | www.pinecone.io | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | clickhouse.com/docs | docs.kinetica.com | docs.pinecone.io/docs/overview | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Clickhouse Inc. | Kinetica | Pinecone Systems, Inc | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2016 | 2012 | 2019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | v24.6.2.17-stable, July 2024 | 7.1, August 2021 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | Open Source Apache 2.0 | commercial | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | C++ | C, C++ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | FreeBSD Linux macOS | Linux | hosted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | String, Number, Boolean | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | Close to ANSI SQL (SQL/JSON + extensions) | SQL-like DML and DDL statements | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | gRPC HTTP REST JDBC MySQL wire protocol ODBC PostgreSQL wire protocol Proprietary protocol | JDBC ODBC RESTful HTTP API | RESTful HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | C# 3rd party library C++ Elixir 3rd party library Go 3rd party library Java 3rd party library JavaScript (Node.js) 3rd party library Kotlin 3rd party library Nim 3rd party library Perl 3rd party library PHP 3rd party library Python 3rd party library R 3rd party library Ruby 3rd party library Rust Scala 3rd party library | C++ Java JavaScript (Node.js) Python | Python | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | user defined functions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | no | yes triggers when inserted values for one or more columns fall within a specified range | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | key based and custom | Sharding | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Asynchronous and synchronous physical replication; geographically distributed replicas; support for object storages. | Source-replica replication | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Immediate Consistency or Eventual Consistency depending on configuration | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | yes GPU vRAM or System RAM | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | Access rights for users and roles. Column and row based policies. Quotas and resource limits. Pluggable authentication with LDAP and Kerberos. Password based, X.509 certificate, and SSH key authentication. | Access rights for users and roles on table level | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and services | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd parties | DoubleCloud: Fully managed ClickHouse alongside best-in-class managed open-source services to build analytics at scale. » more | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ClickHouse | Kinetica | Pinecone | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Vector databases A Beginner’s Guide to ClickHouse Database Real-time database startup ClickHouse acquires PeerDB to expand its Postgres support Database startup ClickHouse Announces PeerDB Acquistion Azur Games migrates all game analytics data to ClickHouse Cloud on AWS ClickHouse Acquires PeerDB to Boost Real-time Analytics with Postgres CDC Integration provided by Google News Kinetica Delivers Real-Time Vector Similarity Search Kinetica ramps up RAG for generative AI, empowering enterprises with real-time operational data Kinetica: AI is a ‘killer app’ for data analytics How GPUs Are Helping Paris’ Public Hospital System Combat the Spread of COVID-19 Kinetica Launches Industry-First Active Analytics Platform provided by Google News Pinecone integrates AI inferencing with vector database Pinecone expands vector database with cascading retrieval, boosting enterprise AI accuracy by up to 48% First-of-its-kind Pinecone Knowledge Platform to Power Best-in-class Retrieval for Customers Pinecone Revamps Retrieval Capabilities for Its Vector Database Platform Pinecone Spruces Up AI Knowledge Platform provided by Google News |
Share this page