DBMS > Apache Spark (SQL) vs. OrigoDB vs. TimescaleDB
System Properties Comparison Apache Spark (SQL) vs. OrigoDB vs. TimescaleDB
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Apache Spark (SQL) Xexclude from comparison | OrigoDB Xexclude from comparison | TimescaleDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | Apache Spark SQL is a component on top of 'Spark Core' for structured data processing | A fully ACID in-memory object graph database | A time series DBMS optimized for fast ingest and complex queries, based on PostgreSQL | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Document store Object oriented DBMS | Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Relational DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | spark.apache.org/sql | origodb.com | www.timescale.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | spark.apache.org/docs/latest/sql-programming-guide.html | origodb.com/docs | docs.timescale.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Apache Software Foundation | Robert Friberg et al | Timescale | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2014 | 2009 under the name LiveDB | 2017 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 3.5.0 ( 2.13), September 2023 | 2.15.0, May 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | Open Source Apache 2.0 | Open Source | Open Source Apache 2.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | no | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Scala | C# | C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | Linux OS X Windows | Linux Windows | Linux OS X Windows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | User defined using .NET types and collections | numerics, strings, booleans, arrays, JSON blobs, geospatial dimensions, currencies, binary data, other complex data types | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | no | no can be achieved using .NET | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | no | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | SQL-like DML and DDL statements | no | yes full PostgreSQL SQL syntax | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | JDBC ODBC | .NET Client API HTTP API LINQ | ADO.NET JDBC native C library ODBC streaming API for large objects | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Java Python R Scala | .Net | .Net C C++ Delphi Java JDBC JavaScript Perl PHP Python R Ruby Scheme Tcl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | no | yes | user defined functions, PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, PL/Java, PL/PHP, PL/R, PL/Ruby, PL/Scheme, PL/Unix shell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | no | yes Domain Events | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | yes, utilizing Spark Core | horizontal partitioning client side managed; servers are not synchronized | yes, across time and space (hash partitioning) attributes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | none | Source-replica replication | Source-replica replication with hot standby and reads on replicas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | no | depending on model | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | no | ACID | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes Write ahead log | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | no | yes | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | no | Role based authorization | fine grained access rights according to SQL-standard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Apache Spark (SQL) | OrigoDB | TimescaleDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Use Amazon Athena with Spark SQL for your open-source transactional table formats What is Apache Spark? The big data platform that crushed Hadoop Cracking the Apache Spark Interview: 80+ Top Questions and Answers for 2024 Performant IPv4 Range Spark Joins Amazon EMR 7.1 runtime for Apache Spark and Iceberg can run Spark workloads 2.7 times faster than Apache Spark 3.5.1 and Iceberg 1.5.2 provided by Google News | General availability: Latest version of the TimeScaleDB extension on Azure Database for PostgreSQL - Flexible Server Timescale Acquires PopSQL to Bring a Modern, Collaborative SQL GUI to PostgreSQL Developers TimescaleDB Is a Vector Database Now, Too PostgreSQL is Now Faster than Pinecone, 75% Cheaper, with New Open Source Extensions Timescale Valuation Rockets to Over $1B with $110M Round, Marking the Explosive Rise of Time-Series Data provided by Google News |
Share this page