DB-EnginesExtremeDB: mitigate connectivity issues in a DBMSEnglish
Deutsch
Knowledge Base of Relational and NoSQL Database Management Systemsprovided by solid IT

DBMS > Apache Impala vs. Microsoft Azure Table Storage vs. Vitess

System Properties Comparison Apache Impala vs. Microsoft Azure Table Storage vs. Vitess

Please select another system to include it in the comparison.

Editorial information provided by DB-Engines
NameApache Impala  Xexclude from comparisonMicrosoft Azure Table Storage  Xexclude from comparisonVitess  Xexclude from comparison
DescriptionAnalytic DBMS for HadoopA Wide Column Store for rapid development using massive semi-structured datasetsScalable, distributed, cloud-native DBMS, extending MySQL
Primary database modelRelational DBMSWide column storeRelational DBMS
Secondary database modelsDocument storeDocument store
Spatial DBMS
DB-Engines Ranking infomeasures the popularity of database management systemsranking trend
Trend Chart
Score14.03
Rank#40  Overall
#24  Relational DBMS
Score4.92
Rank#73  Overall
#6  Wide column stores
Score1.04
Rank#191  Overall
#89  Relational DBMS
Websiteimpala.apache.orgazure.microsoft.com/­en-us/­services/­storage/­tablesvitess.io
Technical documentationimpala.apache.org/­impala-docs.htmlvitess.io/­docs
DeveloperApache Software Foundation infoApache top-level project, originally developed by ClouderaMicrosoftThe Linux Foundation, PlanetScale
Initial release201320122013
Current release4.1.0, June 202215.0.2, December 2022
License infoCommercial or Open SourceOpen Source infoApache Version 2commercialOpen Source infoApache Version 2.0, commercial licenses available
Cloud-based only infoOnly available as a cloud servicenoyesno
DBaaS offerings (sponsored links) infoDatabase as a Service

Providers of DBaaS offerings, please contact us to be listed.
Implementation languageC++Go
Server operating systemsLinuxhostedDocker
Linux
macOS
Data schemeyesschema-freeyes
Typing infopredefined data types such as float or dateyesyesyes
XML support infoSome form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT.nono
Secondary indexesyesnoyes
SQL infoSupport of SQLSQL-like DML and DDL statementsnoyes infowith proprietary extensions
APIs and other access methodsJDBC
ODBC
RESTful HTTP APIADO.NET
JDBC
MySQL protocol
ODBC
Supported programming languagesAll languages supporting JDBC/ODBC.Net
C#
C++
Java
JavaScript (Node.js)
PHP
Python
Ruby
Ada
C
C#
C++
D
Delphi
Eiffel
Erlang
Haskell
Java
JavaScript (Node.js)
Objective-C
OCaml
Perl
PHP
Python
Ruby
Scheme
Tcl
Server-side scripts infoStored proceduresyes infouser defined functions and integration of map-reducenoyes infoproprietary syntax
Triggersnonoyes
Partitioning methods infoMethods for storing different data on different nodesShardingSharding infoImplicit feature of the cloud serviceSharding
Replication methods infoMethods for redundantly storing data on multiple nodesselectable replication factoryes infoimplicit feature of the cloud service. Replication either local, cross-facility or geo-redundant.Multi-source replication
Source-replica replication
MapReduce infoOffers an API for user-defined Map/Reduce methodsyes infoquery execution via MapReducenono
Consistency concepts infoMethods to ensure consistency in a distributed systemEventual ConsistencyImmediate ConsistencyEventual Consistency across shards
Immediate Consistency within a shard
Foreign keys infoReferential integritynonoyes infonot for MyISAM storage engine
Transaction concepts infoSupport to ensure data integrity after non-atomic manipulations of datanooptimistic lockingACID at shard level
Concurrency infoSupport for concurrent manipulation of datayesyesyes infotable locks or row locks depending on storage engine
Durability infoSupport for making data persistentyesyesyes
In-memory capabilities infoIs there an option to define some or all structures to be held in-memory only.nonoyes
User concepts infoAccess controlAccess rights for users, groups and roles infobased on Apache Sentry and KerberosAccess rights based on private key authentication or shared access signaturesUsers with fine-grained authorization concept infono user groups or roles

More information provided by the system vendor

We invite representatives of system vendors to contact us for updating and extending the system information,
and for displaying vendor-provided information such as key customers, competitive advantages and market metrics.

Related products and services

We invite representatives of vendors of related products to contact us for presenting information about their offerings here.

More resources
Apache ImpalaMicrosoft Azure Table StorageVitess
Recent citations in the news

Apache Impala 4 Supports Operator Multi-Threading
29 July 2021, iProgrammer

Apache Impala becomes Top-Level Project
28 November 2017, SDTimes.com

Cloudera Bringing Impala to AWS Cloud
28 November 2017, Datanami

Apache Doris just 'graduated': Why care about this SQL data warehouse
24 June 2022, InfoWorld

Hudi: Uber Engineering’s Incremental Processing Framework on Apache Hadoop
12 March 2017, Uber

provided by Google News

Azure Cosmos DB Data Migration tool imports from Azure Table storage | Azure updates
5 May 2015, azure.microsoft.com

How to Use C# Azure.Data.Tables SDK with Azure Cosmos DB
9 July 2021, hackernoon.com

How to use Azure Table storage in .Net
14 January 2019, InfoWorld

Testing Precompiled Azure Functions Locally with Storage Emulator
8 March 2018, Visual Studio Magazine

How to write data to Azure Table Store with an Azure Function
14 April 2017, Experts Exchange

provided by Google News

PlanetScale Unveils Distributed MySQL Database Service Based on Vitess
18 May 2021, Datanami

PlanetScale grabs YouTube-developed open-source tech, promises Vitess DBaaS with on-the-fly schema changes
18 May 2021, The Register

Massively Scaling MySQL Using Vitess
19 February 2019, InfoQ.com

They scaled YouTube — now they’ll shard everyone with PlanetScale
13 December 2018, TechCrunch

With Vitess 4.0, database vendor matures cloud-native platform
13 November 2019, TechTarget

provided by Google News



Share this page

Featured Products

Datastax Astra logo

Bring all your data to Generative AI applications with vector search enabled by the most scalable
vector database available.
Try for Free

Ontotext logo

GraphDB allows you to link diverse data, index it for semantic search and enrich it via text analysis to build big knowledge graphs. Get it free.

SingleStore logo

Database for your real-time AI and Analytics Apps.
Try it today.

Neo4j logo

See for yourself how a graph database can make your life easier.
Use Neo4j online for free.

Milvus logo

Vector database designed for GenAI, fully equipped for enterprise implementation.
Try Managed Milvus for Free

Present your product here