DBMS > Amazon Aurora vs. Apache Spark (SQL) vs. Microsoft Azure Data Explorer
System Properties Comparison Amazon Aurora vs. Apache Spark (SQL) vs. Microsoft Azure Data Explorer
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | Apache Spark (SQL) Xexclude from comparison | Microsoft Azure Data Explorer Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | Apache Spark SQL is a component on top of 'Spark Core' for structured data processing | Fully managed big data interactive analytics platform | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Relational DBMS column oriented | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | Document store If a column is of type dynamic docs.microsoft.com/en-us/azure/kusto/query/scalar-data-types/dynamic then it's possible to add arbitrary JSON documents in this cell Event Store this is the general usage pattern at Microsoft. Billing, Logs, Telemetry events are stored in ADX and the state of an individual entity is defined by the arg_max(timestamps) Spatial DBMS Search engine support for complex search expressions docs.microsoft.com/en-us/azure/kusto/query/parseoperator FTS, Geospatial docs.microsoft.com/en-us/azure/kusto/query/geo-point-to-geohash-function distributed search -> ADX acts as a distributed search engine Time Series DBMS see docs.microsoft.com/en-us/azure/data-explorer/time-series-analysis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | spark.apache.org/sql | azure.microsoft.com/services/data-explorer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | spark.apache.org/docs/latest/sql-programming-guide.html | docs.microsoft.com/en-us/azure/data-explorer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Apache Software Foundation | Microsoft | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2014 | 2019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 3.5.0 ( 2.13), September 2023 | cloud service with continuous releases | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source Apache 2.0 | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Scala | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux OS X Windows | hosted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | Fixed schema with schema-less datatypes (dynamic) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | yes bool, datetime, dynamic, guid, int, long, real, string, timespan, double: docs.microsoft.com/en-us/azure/kusto/query/scalar-data-types | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | no | all fields are automatically indexed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | SQL-like DML and DDL statements | Kusto Query Language (KQL), SQL subset | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | JDBC ODBC | Microsoft SQL Server communication protocol (MS-TDS) RESTful HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | Java Python R Scala | .Net Go Java JavaScript (Node.js) PowerShell Python R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | no | Yes, possible languages: KQL, Python, R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no | yes see docs.microsoft.com/en-us/azure/kusto/management/updatepolicy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | yes, utilizing Spark Core | Sharding Implicit feature of the cloud service | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | none | yes Implicit feature of the cloud service. Replication either local, cross-facility or geo-redundant. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | Spark connector (open source): github.com/Azure/azure-kusto-spark | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Eventual Consistency Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | no | Azure Active Directory Authentication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | Apache Spark (SQL) | Microsoft Azure Data Explorer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | New Amazon CloudWatch Database Insights: Comprehensive database observability from fleets to instances Introducing scaling to 0 capacity with Amazon Aurora Serverless v2 Understanding how certain database parameters impact scaling in Amazon Aurora Serverless v2 Amazon Aurora PostgreSQL Limitless Database is now generally available Amazon Aurora for Core Banking Systems provided by Google News | Introducing generative AI upgrades for Apache Spark in AWS Glue (preview) Top 80+ Apache Spark Interview Questions and Answers for 2025 Introducing generative AI troubleshooting for Apache Spark in AWS Glue (preview) Adopting Spark Connect. How we use a shared Spark server to… | by Sergey Kotlov | Nov, 2024 Sparkle: Standardizing Modular ETL at Uber provided by Google News | Azure Data Explorer: Log and telemetry analytics benchmark Microsoft is closing down another Azure-based feature in the near future Microsoft announces general availability of Azure Data Explorer and Azure Data Lake Storage Gen2 Log and Telemetry Analytics Performance Benchmark Getting started with Azure Data Explorer and Azure Synapse Analytics for Big Data processing provided by Google News |
Share this page