DBMS > Amazon Aurora vs. Apache Spark (SQL) vs. Heroic
System Properties Comparison Amazon Aurora vs. Apache Spark (SQL) vs. Heroic
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | Apache Spark (SQL) Xexclude from comparison | Heroic Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | Apache Spark SQL is a component on top of 'Spark Core' for structured data processing | Time Series DBMS built at Spotify based on Cassandra or Google Cloud Bigtable, and ElasticSearch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | spark.apache.org/sql | github.com/spotify/heroic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | spark.apache.org/docs/latest/sql-programming-guide.html | spotify.github.io/heroic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Apache Software Foundation | Spotify | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2014 | 2014 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 3.5.0 ( 2.13), September 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source Apache 2.0 | Open Source Apache 2.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Scala | Java | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux OS X Windows | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | schema-free | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | no | yes via Elasticsearch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | SQL-like DML and DDL statements | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | JDBC ODBC | HQL (Heroic Query Language, a JSON-based language) HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | Java Python R Scala | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | yes, utilizing Spark Core | Sharding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | none | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Eventual Consistency Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | Apache Spark (SQL) | Heroic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Introducing Amazon Aurora DSQL | Amazon Web Services AWS introduces Amazon Aurora DSQL and DynamoDB enhancements for multi-region workloads New Amazon CloudWatch Database Insights: Comprehensive database observability from fleets to instances AWS announces Aurora DSQL, a new distributed SQL database that promises virtually unlimited scalability AWS Announces New Database Capabilities Including Amazon Aurora DSQL, the Fastest Distributed SQL Database provided by Google News | Use open table format libraries on AWS Glue 5.0 for Apache Spark Read and write S3 Iceberg table using AWS Glue Iceberg Rest Catalog from Open Source Apache Spark Top 80+ Apache Spark Interview Questions and Answers for 2025 Migration Accelerator: Simplify Spark to Snowflake Transition Sparkle: Standardizing Modular ETL at Uber provided by Google News | How Code Wizards load tested Heroic Labs’ Nakama to two million concurrent players with AWS provided by Google News |
Share this page