DBMS > Amazon Aurora vs. Apache Spark (SQL) vs. Fauna
System Properties Comparison Amazon Aurora vs. Apache Spark (SQL) vs. Fauna
Please select another system to include it in the comparison.
Editorial information provided by DB-Engines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Amazon Aurora Xexclude from comparison | Apache Spark (SQL) Xexclude from comparison | Fauna previously named FaunaDB Xexclude from comparison | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | MySQL and PostgreSQL compatible cloud service by Amazon | Apache Spark SQL is a component on top of 'Spark Core' for structured data processing | Fauna provides a web-native interface, with support for GraphQL and custom business logic that integrates seamlessly with the rest of the serverless ecosystem. The underlying globally distributed storage and compute platform is fast, consistent, and reliable, with a modern security infrastructure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primary database model | Relational DBMS | Relational DBMS | Document store Graph DBMS Relational DBMS Time Series DBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary database models | Document store | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Website | aws.amazon.com/rds/aurora | spark.apache.org/sql | fauna.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technical documentation | docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html | spark.apache.org/docs/latest/sql-programming-guide.html | docs.fauna.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Developer | Amazon | Apache Software Foundation | Fauna, Inc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initial release | 2015 | 2014 | 2014 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current release | 3.5.0 ( 2.13), September 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
License Commercial or Open Source | commercial | Open Source Apache 2.0 | commercial | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cloud-based only Only available as a cloud service | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DBaaS offerings (sponsored links) Database as a Service Providers of DBaaS offerings, please contact us to be listed. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implementation language | Scala | Scala | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server operating systems | hosted | Linux OS X Windows | hosted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data scheme | yes | yes | schema-free | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Typing predefined data types such as float or date | yes | yes | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
XML support Some form of processing data in XML format, e.g. support for XML data structures, and/or support for XPath, XQuery or XSLT. | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary indexes | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SQL Support of SQL | yes | SQL-like DML and DDL statements | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APIs and other access methods | ADO.NET JDBC ODBC | JDBC ODBC | RESTful HTTP API | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supported programming languages | Ada C C# C++ D Delphi Eiffel Erlang Haskell Java JavaScript (Node.js) Objective-C OCaml Perl PHP Python Ruby Scheme Tcl | Java Python R Scala | C# Go Java JavaScript Python Ruby Scala Swift | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Server-side scripts Stored procedures | yes | no | user defined functions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triggers | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Partitioning methods Methods for storing different data on different nodes | horizontal partitioning | yes, utilizing Spark Core | horizontal partitioning consistent hashing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Replication methods Methods for redundantly storing data on multiple nodes | Source-replica replication | none | Multi-source replication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MapReduce Offers an API for user-defined Map/Reduce methods | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Consistency concepts Methods to ensure consistency in a distributed system | Immediate Consistency | Immediate Consistency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foreign keys Referential integrity | yes | no | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transaction concepts Support to ensure data integrity after non-atomic manipulations of data | ACID | no | ACID | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concurrency Support for concurrent manipulation of data | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Durability Support for making data persistent | yes | yes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In-memory capabilities Is there an option to define some or all structures to be held in-memory only. | yes | no | no | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User concepts Access control | fine grained access rights according to SQL-standard | no | Identity management, authentication, and access control | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More information provided by the system vendorWe invite representatives of system vendors to contact us for updating and extending the system information, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Related products and servicesWe invite representatives of vendors of related products to contact us for presenting information about their offerings here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amazon Aurora | Apache Spark (SQL) | Fauna previously named FaunaDB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DB-Engines blog posts | Cloud-based DBMS's popularity grows at high rates The popularity of cloud-based DBMSs has increased tenfold in four years Amazon - the rising star in the DBMS market | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent citations in the news | Introducing Amazon Aurora DSQL | Amazon Web Services How Firmex used AWS SCT and AWS DMS to move 65,000 on-premises Microsoft SQL Server databases to an Amazon Aurora PostgreSQL cluster Accelerate your generative AI application development with Amazon Bedrock Knowledge Bases Quick Create and Amazon Aurora Serverless Introducing scaling to 0 capacity with Amazon Aurora Serverless v2 New Amazon CloudWatch Database Insights: Comprehensive database observability from fleets to instances provided by Google News | Read and write S3 Iceberg table using AWS Glue Iceberg Rest Catalog from Open Source Apache Spark Top 80+ Apache Spark Interview Questions and Answers for 2025 Use open table format libraries on AWS Glue 5.0 for Apache Spark Migration Accelerator: Simplify Spark to Snowflake Transition Sparkle: Standardizing Modular ETL at Uber provided by Google News | Fauna Adds Declarative Tool to Update Namesake Database New Innovative Schema Features Expand Capabilities of Fauna’s Document-Relational Database Utah Natural Heritage Program Fauna Launches Distributed Document-Relational Database On Google Cloud Marketplace Launch of the World Wildlife Crime Report 2024: New data, trends, threats and possible solutions to combat illegal wildlife trade provided by Google News |
Share this page